Current Status of the JSRT and AI Research in the Field of Medical Imaging

OSAKA UNIVERSITY

Takayuki Ishida, Ph.D.

Japanese Society of Radiological Technology Representative Director (President)

> Department of Health Sciences, Osaka University

Current Status of the JSRT

and Research in the Field of Medical Imaging

OSAKA UNIVERSITY

Resume

WORK EXPERIENCE

- •2012 ~ Professor in Osaka University
- •2005 \sim 2012 Professor in Hiroshima International University
- •1998 \sim 2005 Associate Professor in Hiroshima International University
- •1994 \sim 1998 Research Associate in the University of Chicago
- 1986 \sim 1994 Radiological Technologist in Osaka Central Hospital
- •1983 \sim 1986 Radiological Technologist in Muikaichi Hospital

OFFICIAL POSITION

- •2023 ~ Representative Director of the Japanese Society of Radiological Technology (JSRT)
- •2023 ~ Advisor of Medical Imaging and Information Sciences (MII)
- •2020~ Vice Dean of Division of Health Sciences, Department of Medicine, Osaka University

EDUCATION

- •1993 Obtained Doctorate in Engineering from Ritsumeikan University
- •1983 Graduated from College of Biomedical Technology Osaka University

SPECIALIZED FIELD

- Artificial Intelligence
- Computer-Aided Detection and/or Diagnosis (CADe, CADx)
- Medical Image Analysis and Processing
- Medical Imaging Technology

Takayuki Ishida, Ph.D.

JSRT Administrators 2023 • 2024

Administrator	Name	Administrator Name	
President	Takayuki Ishida	Director	Rie Tanaka
Vice-president	Yasuo Okuda	Director	Mitsuhiro Nakamae
Vice-president	Takao Ichida	Director	Hiroko Nishide
Vice-president	Toru Negishi	Director	Eiji Nishimaru
Director	Takashi limori	Director	Kohei Harada
Director	Hideyuki Iwanaga	Director	Kosuke Matsubara
Director	Koji Uchida	Director	Noriyuki Yanagawa
Director	Hidemichi Kawata	Director	Seiji Yahata
Director	Koji Koizumi	Director	Takayoshi Yamaguchi
Director	Shigeyoshi Saito	Auditor-secretary	Hiroshi Hirano
Director	Junji Shiraishi	Auditor-secretary	Masao Funahashi

President's Statement of Beliefs

- Encouraging interdisciplinary research
- Collaboration and partnerships with international organizations
- Quality basic education
- Training of young researchers

Recent advances in artificial intelligence (AI), 4K/8K video technology, AI using quantum computers, and faster Monte Carlo simulations will surely lead radiology technology to unprecedented advances. I would like <u>everyone to</u> <u>have a broad perspective, be interested in different fields, and strive to create</u> <u>an environment in which they can learn new knowledge and technology.</u> Joint research by multiple specialized subcommittees is important to create a system incorporating advanced external technology and knowledge for radiological technology.

I strongly hope that each specialized subcommittee will promote innovative research, publish more papers than ever, and become the driving force behind creating trends.

Collaboration and partnerships with international organizations

We hold study groups and academic conferences overseas in collaboration with Asian countries that provide educational and research support, as well as overseas academic societies with which we have MOU, and hold related international academic conferences in Japan. <u>By holding</u> <u>the conference jointly, we would like to promote mutual academic</u> <u>development and deepen our friendship.</u>

Quality basic education

I would like to <u>place emphasis on education because the knowledge</u> <u>that members gain through excellent education will definitely be useful in</u> <u>research and clinical practice</u>. To this end, we would like to create an environment where all members can learn systematically, including enriching the educational syllabus and linking each item to content.

• Training of young researchers

Nurturing young researchers is extremely important for the continued development of radiological technology and for the future development of academic societies. Local branches have played this role up until now, but I would like to see them work harder than ever to develop young people.

Radiological Physics and Technology, since 2008

Radiological Physics and Technology covers multiple disciplines involved in basic research and clinical applications in radiological sciences. The multidisciplinary research in medical physics and radiological technology <u>as</u> well as the promotion of research efforts in new scientific fields will be facilitated by the journal's editorial policy, which will also aim to promote <u>translational research in this field</u>.

Radiological Physics and Technology, since 2008

Quarterly publication since 2017

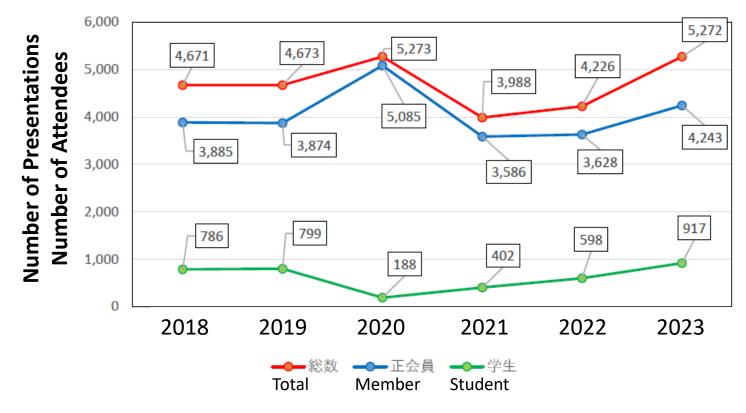
- Provides an ideal forum for <u>sharing new knowledge related to research and</u> <u>development in radiological science and technology</u>
- Contributes to progress and improvement in medical practice and patient health <u>care</u>.
- <u>The official journal of the Japanese Society of Radiological Technology (JSRT)</u>, the Japan Society of Medical Physics (JSMP), and <u>the Asia-Oceania Federation</u> <u>of Organizations for Medical Physics (AFOMP)</u>

RPT obtained Journal Impact Factor in 2023

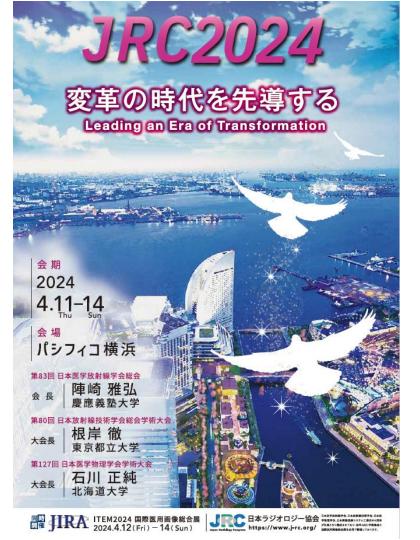
Editor-in-Chief Nobuyuki Kanematsu

1.6 (2022) Impact factor

1.8 (2022) Five year impact factor **7 days** Submission to first decision (Median)



Number of presentations and attendees at scientific congress


	Annual Meeting				Autumn Meeting			
	host city	# of Papers	Attendees		host city	# of Papers	Attendees	
2018	Yokohama	546	4728		Sendai	456	1785	
2019	Yokohama	539	4737		Osaka	387	2054	
2020	Yokohama	498	5273	·····	Tokyo	-	-	
2021	Yokohama	332	3988		Kumamoto	331	2409	
2022	Yokohama	326	4226		Tokyo	260	2048	
2023	Yokohama	488	5272		Nagoya	332	2305	
2024	Yokohama	485						


Number of presentations and attendees at the annual congress (JRC)

Japanese Society of Radiological Technology

contents

home

Call for Abstracts

JSMP Home

Past & Future Meeting

Welcome to the 3rd ICRPT !

The 3rd ICRPT will be held in the JRC2024

Date: April, 11-14, 2024 Venue: Pacifico Yokohama , Yokohama, Japan Conference President: Negishi Toru (JSRT) Masayori Ishikawa (JSMP)

The 1st Japanese Congress of Radiological Technology in Medicine (JCRTM2024) will be held jointly with the Japan Association of Radiological Technologists (JART) in 2024.

- Conference: The 1st Japan Congress of Radiological Technology in Medicine
- Hosted: The 40th Japanese Association of Radiological Technologist Academic Conference, The 52nd Japanese Society of Radiological Technology Autumn Congress
- Meeting period: October 31st (Thursday) to November 3rd (Sunday), 2024
- Venue: Okinawa Convention Center: 4-3-1 Mashiki, Ginowan City, Okinawa
- Theme: Yuimar ~Co-creation of medical radiological technology~
- Chairman: Junji Shiraishi (JSRT), Katsuhiko Ueda (JART)

Current Status of the JSRT

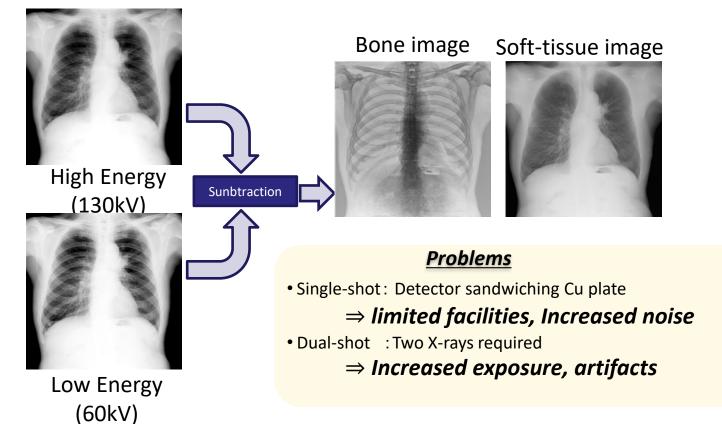
AI Research in the Field of Medical Imaging

and

OSAKA UNIVERSITY

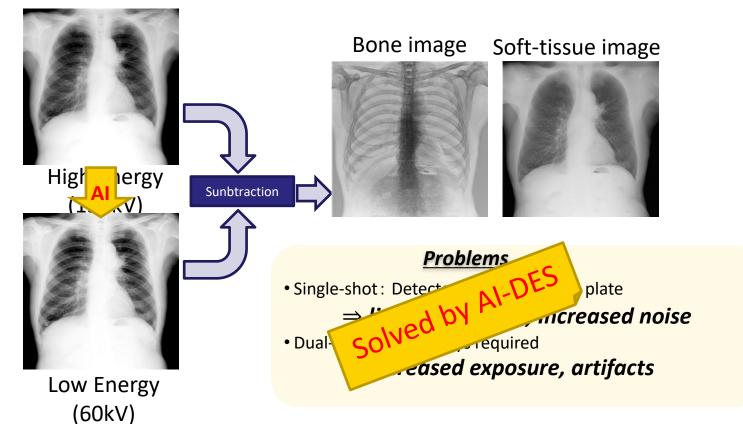
Development of Artificial Intelligence-Based Dual-Energy Subtraction for Chest Radiography

- by 🛞 Asumi Yamazaki ^{1,†} 🖂, ৪ Akane Koshida ^{1,†}, ৪ Toshimitsu Tanaka ², ৪ Masashi Seki ³ and ৪ Takayuki Ishida ^{1,*} 🖂 💿
- ¹ Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- ² Department of Radiology, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan
- ³ Department of Radiology, Kitasato University Hospital, Sagamihara 252-0329, Japan
- * Author to whom correspondence should be addressed.
- [†] These authors contributed equally to this work.

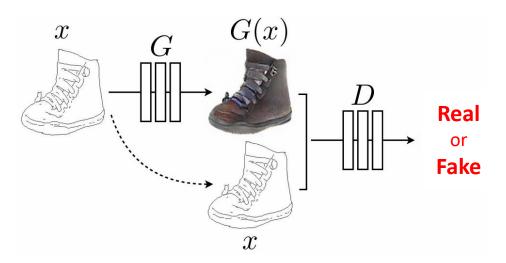

Appl. Sci. 2023, 13(12), 7220; https://doi.org/10.3390/app13127220

Submission received: 17 May 2023 / Revised: 9 June 2023 / Accepted: 15 June 2023 / Published: 16 June 2023

Background

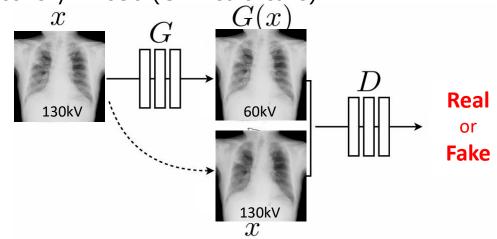

DES (dual energy subtraction) method

Background


DES (dual energy subtraction) method

Pix2pix^[1]

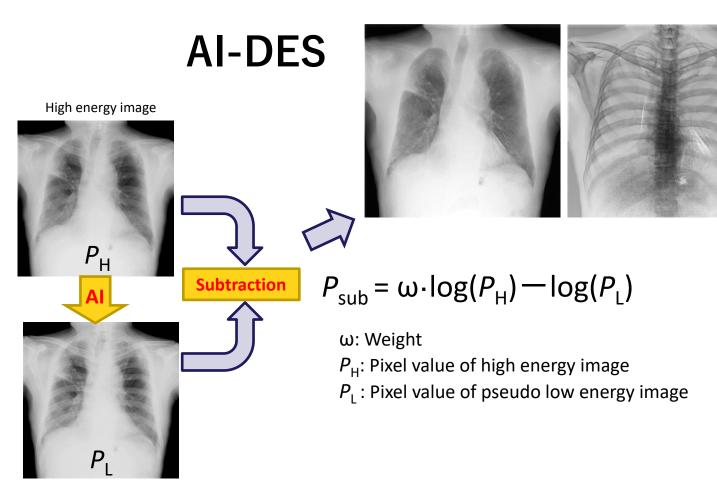
• Deep learning model used for image style conversion A type of Conditional GAN (Generative Adversarial Networks)


[1] P. Isora, J.-Y. Zhu, T. Shou, and A.A. Efros. "Image-to Image Translation with Conditional Adversarial Networks," *Proceedings of 2017 IEEE CVPR*, 2017

Creating an AI network

- High energy image \Rightarrow Generation of pseudo low energy image (130kV) (60kV)
- Training using 240 chest X-ray images from Kitasato University Hospital obtained by Dual-shot method

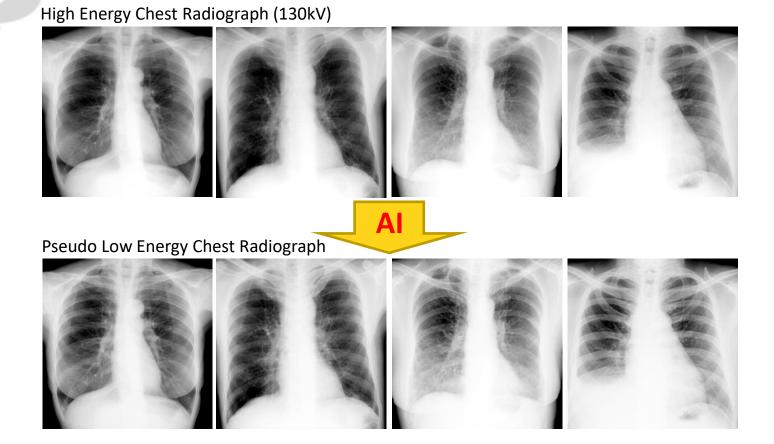
Discovery XR656 (GE Healthcare)


[1] P. Isora, J.-Y. Zhu, T. Shou, and A.A. Efros. "Image-to Image Translation with Conditional Adversarial Networks," *Proceedings of 2017 IEEE CVPR*, 2017

Creating an AI network

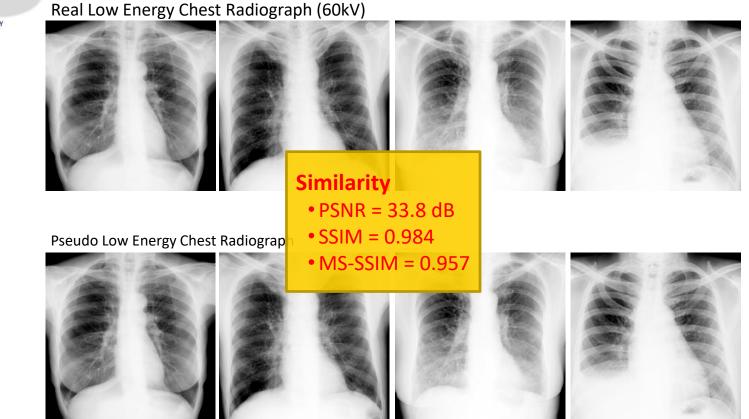
• High energy image \Rightarrow Generation of pseudo low energy image (130kV) (60kV)

			eudo low energy
High energy image	Encoder	Decoder	image
100 Tel 1	3ch (1024 × 1024) Conv2D +LekyReLU 64ch (512 × 512)	3ch (1024 × 1024) Concat ReLU+Deconv2D	
	Conv2D+BN	Concat ReLU+Deconv2D 64ch (512 × 512)
	+LekyReLU 128ch (256 × 256)	+BN	
	Conv2D+BN +LekyReLU 256ch (128 × 128) Conv2D+BN +LekyReLU 512ch (64 × 64) Conv2D+BN +LekyReLU 512ch (32 × 32) Conv2D+BN +LekyReLU 512ch (32 × 32) Conv2D+BN +LekyReLU 512ch (16 × 16)	Concat ReLU+Deconv2D 128ch (256 × 256)	
		+BN	
		Concat ReLU+Deconv2D 256ch (128 × 128)	
		+BN	
		Concat ReLU+Deconv2D 512ch (64 × 64)	
		+BN+Dropout	
		Concat +BN+Dropout	
	Conv2D+BN +LekyReLU 512ch (8 × 8)	Concat +BN+Dropout 512ch (16 × 16)	
	Conv2D+BN +LekyReLU 512ch (4 × 4)	Concat Deconv2D+BN 512ch (8 × 8)	,

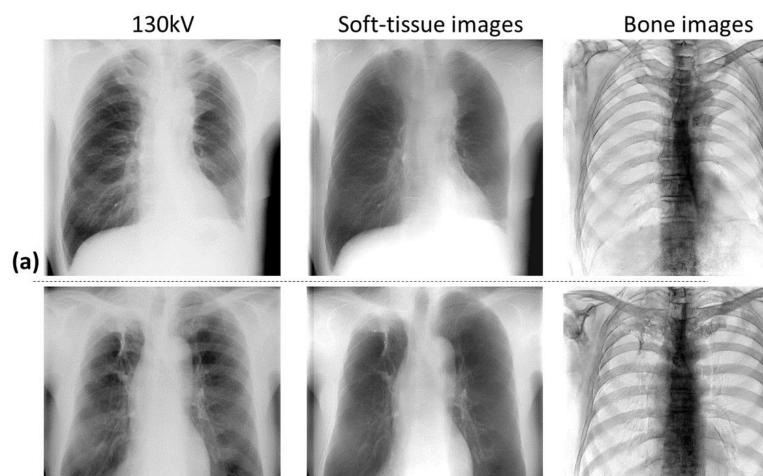


pseudo low energy image

OSAKA UNIVERSITY

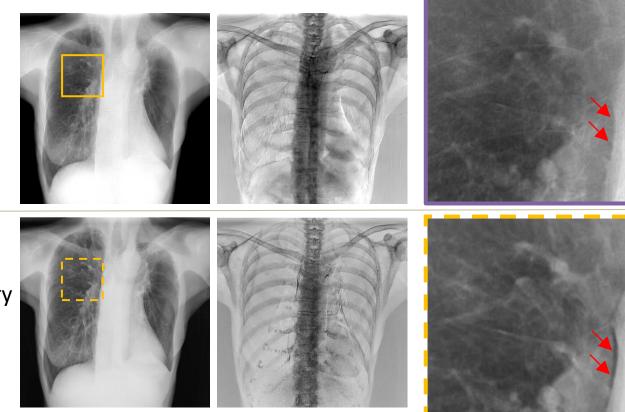

Pseudo low energy image generated by AI

OSAKA UNIVERSITY

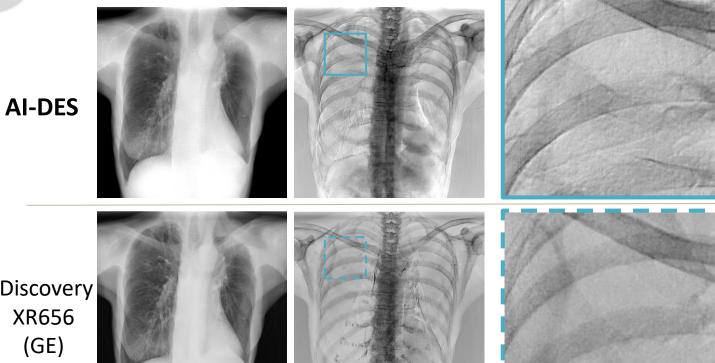


Pseudo low energy image generated by AI

SOSAKA UNIVERSITY



AI-DES vs Real DES



Discovery XR656 (GE)

AI-DES vs Real DES

Discovery XR656 (GE)

Summary

- We have developed AI-DES that generates soft tissue and bone images from a high-energy chest X-ray image.
- Image quality of the generated image is comparable to clinically used systems.
- Solved the problems of existing DES methods (limited facilities, increased radiation exposure, noise degradation, motion artifacts)

 \Rightarrow Image diagnosis with a large amount of information through routine examinations

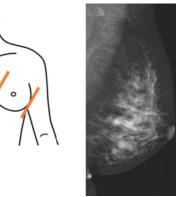
• Future challenges include countermeasures against artifacts in bone images and verification of clinical usefulness.

Two-View Mammogram Synthesis from Single-View Data Using Generative Adversarial Networks

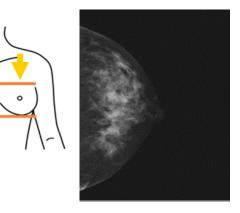
by ৪ Asumi Yamazaki and ৪ Takayuki Ishida * 🖂 💿

Division of Health Sciences, Osaka University Graduate School of Medicine, Suita 565-0871, Japan

Author to whom correspondence should be addressed.


Appl. Sci. 2022, 12(23), 12206; https://doi.org/10.3390/app122312206

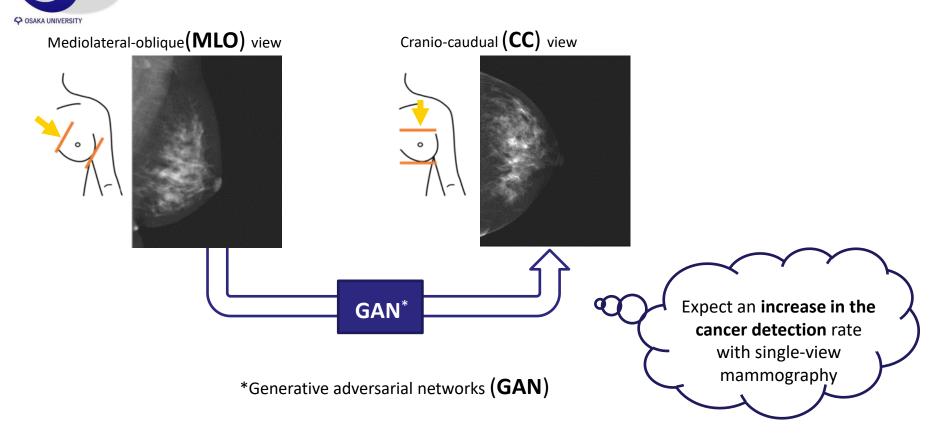
Submission received: 3 November 2022 / Revised: 25 November 2022 / Accepted: 26 November 2022 / Published: 29 November 2022


Another-view mammogram synthesis from single-view data

SOSAKA UNIVERSITY

Mediolateral-oblique (MLO) view

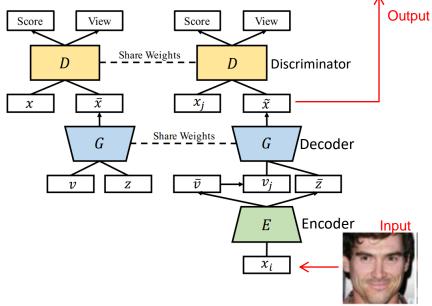
Cranio-caudual(CC) view



In Japanese breast cancer screening

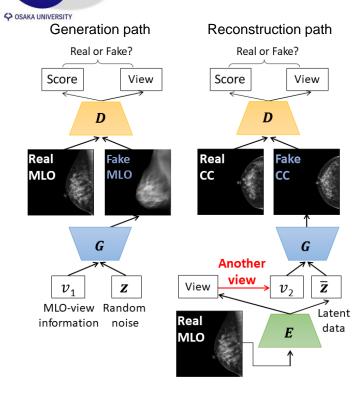
- 35-40 yrs. : MLO + CC
- Over 50 yrs. : MLO only (single-view mammography)

Another-view mammogram synthesis from single-view data



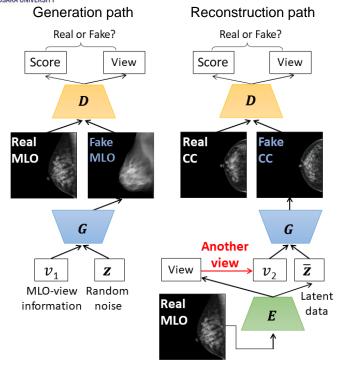
CR-GAN: Learning Complete Representations for Multi-view Generation

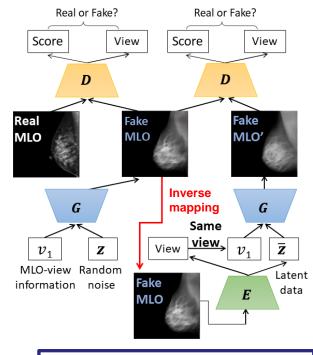
Yu Tian¹, Xi Peng¹, Long Zhao¹, Shaoting Zhang² and Dimitris N. Metaxas¹


¹ Rutgers University ² University of North Carolina at Charlotte

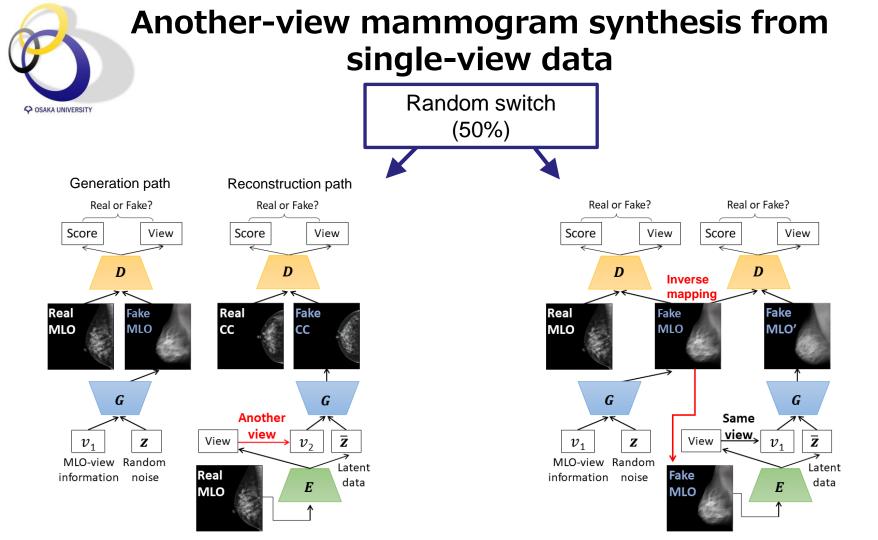
The code is publicly available: https://github.com/bluer555/CR-GAN

Another-view mammogram synthesis from single-view data



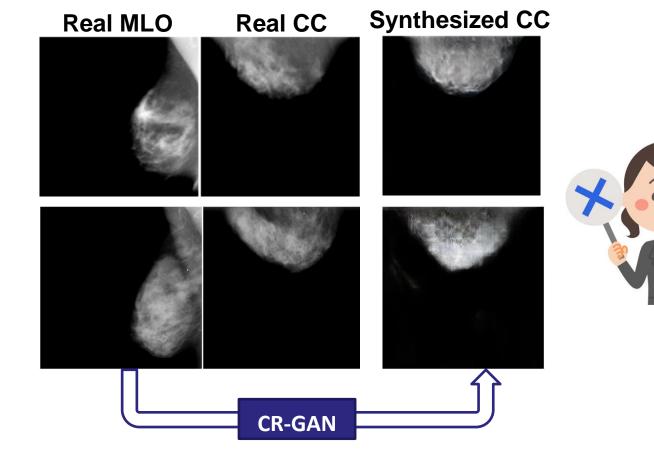

Two-pathway network

- Generation path:
 - G : random noise + view information →fake MLO or CC
 - D : discriminates real and fake views
- Reconstruction path:
 - G : real MLO \rightarrow fake CC
 - D : discriminates real and fake views


€ OSAKA UNIVERSITY

Another-view mammogram synthesis from single-view data

Generalization performance 🖍


- The improved network of WGAN (Wasserstein GAN)
 Optimization by Wasserstein distance
 - *D* maximizes *G* minimizes

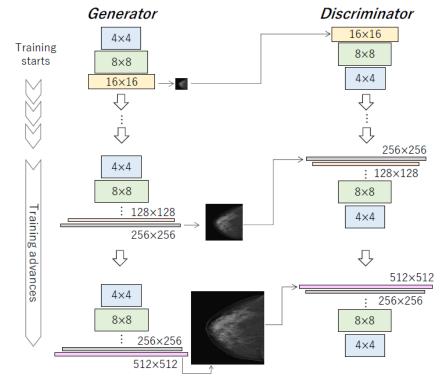
$$W(\mathbb{P}_r, \mathbb{P}_{ heta}) = \mathop{\mathbb{E}}\limits_{oldsymbol{x} \sim \mathbb{P}_r} [D(oldsymbol{x})] - \mathop{\mathbb{E}}\limits_{oldsymbol{z} \sim \mathbb{P}_{oldsymbol{ heta}}} [D(oldsymbol{ar{x}})],$$

• Stable and less prone to vanishing gradient problem

Synthesized image examples by CR-GAN

Modifications to CR-GAN

- PG (progressive growing) technique
- Feature matching loss

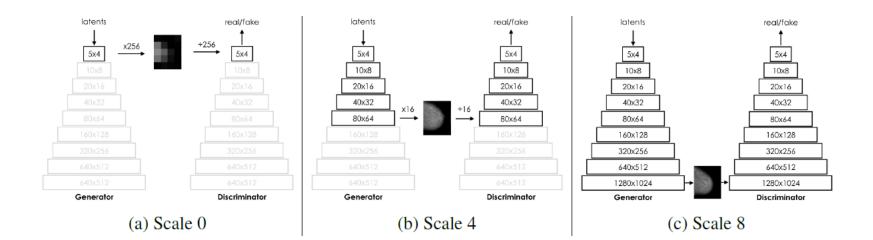


PG (progressive growing) technique

PG-GAN: Karras T. et al. "Progressive growing of GANs for improved quality, stability, and variation." *Proceedings of 6th ICLR*. 2018

- Increases image resolution as training advances.
- Learns higher-frequency image features gradually.

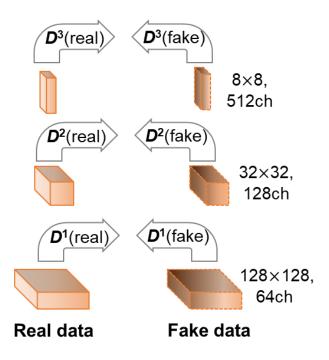
- Ensures stable training
- Results in reduced training time


PG (progressive growing) technique

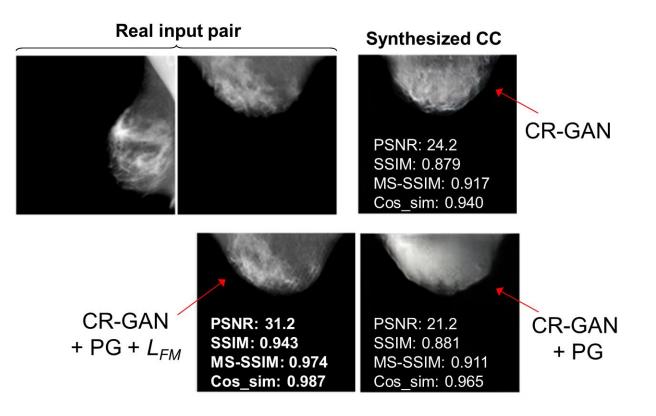
OSAKA UNIVERSITY

High-Resolution Mammogram Synthesis using Progressive Generative Adversarial Networks

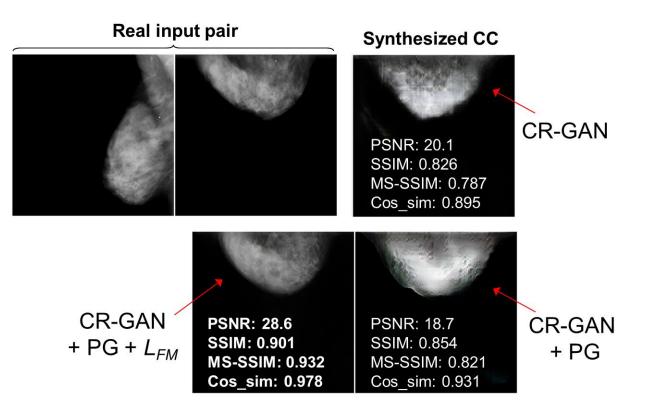
Dimitrios Korkinof^{*†}, Tobias Rijken[†], Michael O'Neill[†], Joseph Yearsley[†], Hugh Harvey[†], and Ben Glocker^{†,§}


> [†]Kheiron Medical Technologies Ltd. [§]Department of Computing, Imperial College London

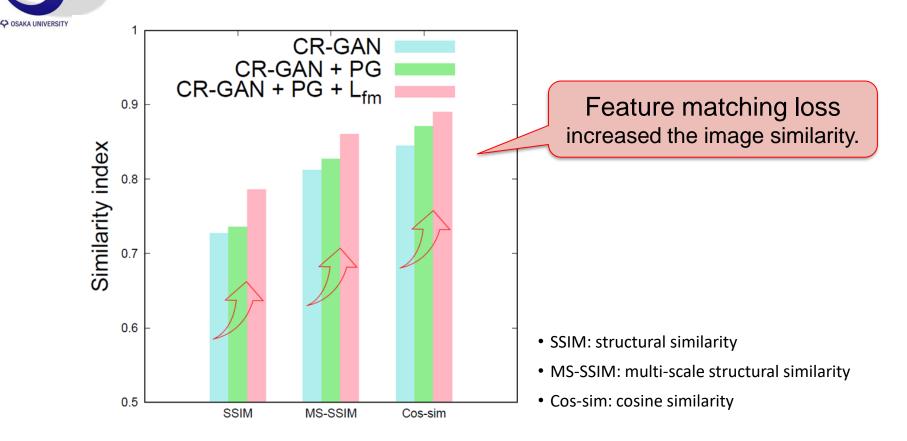
Feature matching loss (L_{FM})


Pix2pix HD: Wang T. et al. "High-resolution image synthesis and semantic manipulation with conditional GANs." *arXiv*. 1711.11585, 2017

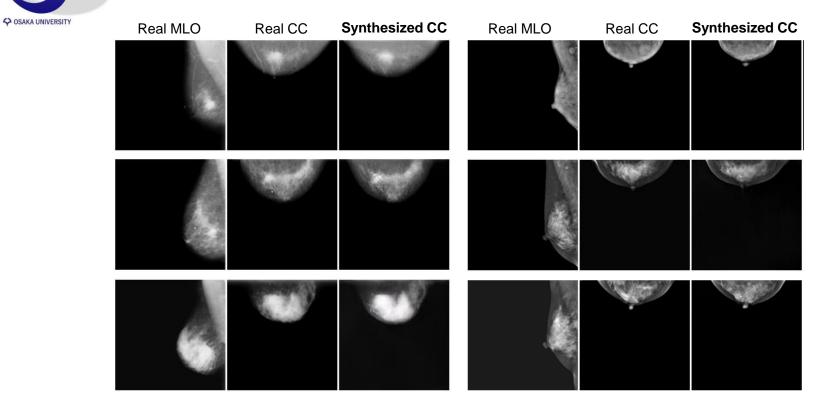
- Minimizes L1 distance between real and fake features
- Accomplishes sharper, more realistic image generation

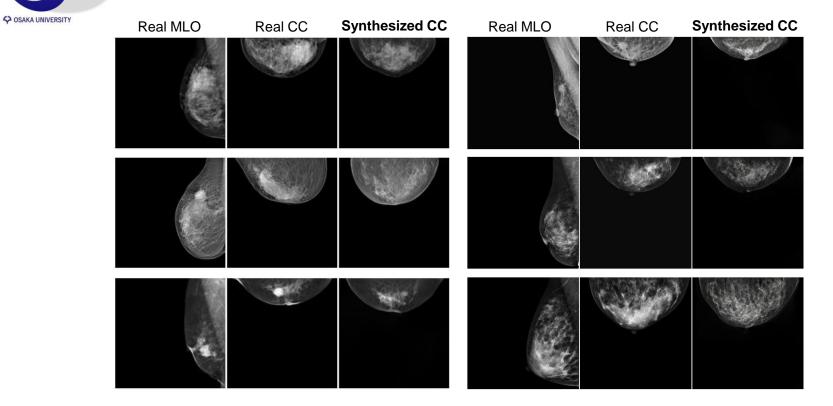

Comparison of synthesized images

S OSAKA UNIVERSITY



Comparison of synthesized images


SOSAKA UNIVERSITY


Similarity of real and synthesized CC views

Successful cases of synthesized images

Failed cases of synthesized images

Thank you for your attention.

